Chirped-pulse millimeter-wave spectroscopy: spectrum, dynamics, and manipulation of Rydberg-Rydberg transitions.
نویسندگان
چکیده
We apply the chirped-pulse millimeter-wave (CPmmW) technique to transitions between Rydberg states in calcium atoms. The unique feature of Rydberg-Rydberg transitions is that they have enormous electric dipole transition moments (~5 kiloDebye at n* ~ 40, where n* is the effective principal quantum number), so they interact strongly with the mm-wave radiation. After polarization by a mm-wave pulse in the 70-84 GHz frequency region, the excited transitions re-radiate free induction decay (FID) at their resonant frequencies, and the FID is heterodyne-detected by the CPmmW spectrometer. Data collection and averaging are performed in the time domain. The spectral resolution is ~100 kHz. Because of the large transition dipole moments, the available mm-wave power is sufficient to polarize the entire bandwidth of the spectrometer (12 GHz) in each pulse, and high-resolution survey spectra may be collected. Both absorptive and emissive transitions are observed, and they are distinguished by the phase of their FID relative to that of the excitation pulse. With the combination of the large transition dipole moments and direct monitoring of transitions, we observe dynamics, such as transient nutations from the interference of the excitation pulse with the polarization that it induces in the sample. Since the waveform produced by the mm-wave source may be precisely controlled, we can populate states with high angular momentum by a sequence of pulses while recording the results of these manipulations in the time domain. We also probe the superradiant decay of the Rydberg sample using photon echoes. The application of the CPmmW technique to transitions between Rydberg states of molecules is discussed.
منابع مشابه
Chirped-pulse millimeter-wave spectroscopy of Rydberg-Rydberg transitions.
Transitions between Rydberg states of Ca atoms, in a pulsed, supersonic atomic beam, are directly detected by chirped-pulse millimeter-wave spectroscopy. Broadband, high-resolution spectra with accurate relative intensities are recorded instantly. Free induction decay (FID) of atoms, polarized by the chirped pulse, at their Rydberg-Rydberg transition frequencies, is heterodyne detected, average...
متن کاملA Buffer Gas Cooled Molecular Beam Apparatus for Chirped Pulse Millimeter Wave Spectroscopy by Ethan
An apparatus that utilizes buffer gas cooling to produce slow atomic (Ba, Ca) and molecular (BaF, CaF) beams is constructed. In-cell temperatures of 20 0.25K are achieved with chamber cooldown times of under two hours. Laser Induced Fluorescence (LIF) spectra of BaF and CaF confirmed thermalization of the molecular beam to the temperature of the buffer gas and additional hydrodynamic cooling to...
متن کاملAdiabatic rapid passage two-photon excitation of a Rydberg atom
We considered the two-photon adiabatic rapid passage excitation of a single atom from the ground to a Rydberg state. Three schemes were analyzed: both pump and Stokes fields chirped and pulsed, only the pump field chirped, and only the pump field pulsed and chirped while the Stokes field is continuous wave (CW). In all three cases high transfer efficiencies > 99% were achieved for the experimen...
متن کاملChirped-Pulse Fourier Transform Millimeter-Wave Spectroscopy for Dynamics and Kinetics Studies of Combustion-Related Reactions
I am developing a new program to use microwave and millimeter-wave rotational spectroscopy to probe stable and reactive species relevant to combustion chemistry, and to use this capability to study reaction dynamics and kinetics. Rotational spectroscopy is known for its unsurpassed resolution and precision in determining molecular structure. The program will be based on chirped-pulse Fourier tr...
متن کاملChirped-Pulse millimeter-Wave spectroscopy for dynamics and kinetics studies of pyrolysis reactions.
A Chirped-Pulse millimeter-Wave (CPmmW) spectrometer is applied to the study of chemical reaction products that result from pyrolysis in a Chen nozzle heated to 1000-1800 K. Millimeter-wave rotational spectroscopy unambiguously determines, for each polar reaction product, the species, the conformers, relative concentrations, conversion percentage from precursor to each product, and, in some cas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 138 1 شماره
صفحات -
تاریخ انتشار 2013